CuDNN是专门针对Deep Learning框架设计的一套GPU计算加速方案,目前支持的DL库包括Caffe,ConvNet, Torch7等。
CuDNN可以在官网免费获得,注册帐号后即可下载。官网没有找到安装说明,下载得到的压缩包内也没有Readme. 不过google一下就会找到许多说明。基本原理是把lib文件加入到系统能找到的lib文件夹里, 把头文件加到系统能找到的include文件夹里就可以。这里把他们加到CUDA的文件夹下(参考这里)
tar -xzvf cudnn-6.5-linux-R1.tgz
cd cudnn-6.5-linux-R1
sudo cp lib* /usr/local/cuda/lib64/
sudo cp cudnn.h /usr/local/cuda/include/
执行后发现还是找不到库, 报错
error while loading shared libraries: libcudnn.so.6.5: cannot open shared object file: No such file or directory
而lib文件夹是在系统路径里的,用ls -al发现是文件权限的问题,因此用下述命令先删除软连接
cd /usr/local/cuda/lib64/
sudo rm -rf libcudnn.so libcudnn.so.6.5
然后修改文件权限,并创建新的软连接
sudo chmod u=rwx,g=rx,o=rx libcudnn.so.6.5.18
sudo ln -s libcudnn.so.6.5.18 libcudnn.so.6.5
sudo ln -s libcudnn.so.6.5 libcudnn.so
下载cudnn的安装文件cudnn-7.0-win-x64-v3.0-prod.zip
将文件解压,例如解压到C:\cuda\,注意这里的路径不要出现中文及符号。
解压后有三个子目录:bin,include,lib。
bin目录(例如 C:\cuda\bin)添加到环境变量 PATH 中
用 vs 新建 cuda 项目。在vs编辑器正上方,Solution Configuration 的内容如果是Debug ,改为 Release ,旁边Platforms Solution Platforms 中的内容如果是win32,要改选为x64。如下:
Paste_Image.png
接下来修改项目属性:
项目属性/VC++ Directories/Include Directories 中添加入include的路径(例如 C:\cuda\include);
在项目属性/VC++ Directories/Libary Directories 中添加入lib\x64路径(例如 C:\cuda\lib\x64);
在项目属性/Linker/Input/Additional Dependencies 中添加入cudnn.lib;
项目属性/CUDA C|C++ / Device /Code Generation 中,将sm_20改为 sm_30或更高;
项目属性修改完毕。
140.5M / 09-05
76.4M / 03-25
55M / 06-05
237.9M / 04-13
900.9M / 03-02
96.2M / 07-06
311.2M / 07-06
335M / 07-06
200M / 07-06
413.8M / 07-06
484.7M / 09-27
165.4M / 09-05
353.9M / 06-05
131.8M / 04-13
195.6M / 03-03
45.6M / 09-08
665.2M / 07-06
2.84G / 07-06
93M / 07-06
338.3M / 07-06
1.38G / 07-26
488.3M / 07-16
109.8M / 06-03
142M / 01-08
1.2M / 11-23
548.8M / 04-13
1.6M / 04-13
1.48G / 03-18
646.6M / 03-03
133.7M / 03-03
110.5M / 09-05
33.4M / 09-05
325.8M / 08-12
60M / 04-29
254M / 04-25
659M / 04-23
1M / 12-26
253.4M / 12-08
253M / 12-08
1.19G / 11-16
369M / 09-22
181.5M / 09-22
201.2M / 09-05
488.3M / 07-16
248.9M / 12-08
248.9M / 12-08
100.6M / 03-06
148.9M / 03-06
1.12G / 07-06
1.25G / 07-06
1.76G / 09-22
1.92G / 04-17
116.2M / 04-10
201.5M / 04-13
7.31G / 07-01
94.3M / 07-06
2.48G / 07-06
7.63G / 07-06
1M / 07-06
778.1M / 07-06
561.8M / 07-11
72M / 07-06
548.7M / 07-06
1.00G / 07-06
9.13G / 07-06
126.2M / 07-06
72M / 07-06
105.1M / 07-06
132M / 07-06
132M / 07-06